mathcentre

Factorising the difference of two squares

The technique of factorising a quadratic expression has been explained on the leaflet Factorising quadratic expressions. There is a special case of quadratic expression known as the difference of two squares. This leaflet explains what this means and how such expressions are factorised.

What is meant by the difference of two squares ?

A typical example of a quadratic expression which is the difference of two squares is $x^{2}-9$. Note that there is no x term and that the number 9 is itself a square number. A square number is one which has resulted from squaring another number. In this case 9 is the result of squaring $3,\left(3^{2}=9\right)$, and so 9 is a square number.

Hence $x^{2}-9$ is the difference of two squares, $x^{2}-3^{2}$.
When we try to factorise $x^{2}-9$ we are looking for two numbers which add to zero (because there is no term in x), and which multiply to give -9 . Two such numbers are -3 and 3 because

$$
-3+3=0, \quad \text { and } \quad-3 \times 3=-9
$$

So

$$
x^{2}-9=(x-3)(x+3)
$$

It is always the case that $x^{2}-a^{2}$ factorises to $(x-a)(x+a)$.
The difference of two squares, $x^{2}-a^{2}$, always factorises to

$$
x^{2}-a^{2}=(x-a)(x+a)
$$

Example

Factorise $x^{2}-25$.
Note that $x^{2}-25$ is the difference of two squares because 25 is a square number $\left(25=5^{2}\right)$. So we need to factorise $x^{2}-5^{2}$.

$$
x^{2}-5^{2}=(x-5)(x+5)
$$

Example

Factorise $y^{2}-81$.
Note that $y^{2}-81$ is the difference of two squares because 81 is a square number $\left(81=9^{2}\right)$. So we need to factorise $y^{2}-9^{2}$.

$$
y^{2}-9^{2}=(y-9)(y+9)
$$

Exercises

1. Factorise the following.
a) $x^{2}-16$
b) $x^{2}-36$
c) $x^{2}-1$
d) $x^{2}-121$
e) $x^{2}-49$

A different form

A slightly different form occurs if we now include a square number in front of the x^{2} term:

Example

Suppose we wish to factorise $9 x^{2}-16$.
Note that 9 is a square number, and so the term $9 x^{2}$ can be written $(3 x)^{2}$. So we still have a difference of two squares

$$
(3 x)^{2}-4^{2}
$$

To factorise this we write

$$
9 x^{2}-16=(3 x-4)(3 x+4)
$$

Note that when multiplying-out the brackets the x terms cancel out.

Exercises

2. Factorise the following.
a) $9 x^{2}-1$
b) $16 x^{2}-9$
c) $49 x^{2}-1$
d) $25 x^{2}-16$

Answers

1.

a) $(x-4)(x+4)$
b) $(x-6)(x+6)$
c) $(x-1)(x+1)$
d) $(x-11)(x+11)$
e) $(x-7)(x+7)$
2.
a) $(3 x+1)(3 x-1)$
bj) $(4 x+3)(4 x-3)$
c) $(7 x+1)(7 x-1)$
d) $(5 x+4)(5 x-4)$

